Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices

نویسندگان

  • Subhrajit Mukherjee
  • Rishi Maiti
  • Ajit K. Katiyar
  • Soumen Das
  • Samit K. Ray
چکیده

Silicon compatible wafer scale MoS2 heterojunctions are reported for the first time using colloidal quantum dots. Size dependent direct band gap emission of MoS2 dots are presented at room temperature. The temporal stability and decay dynamics of excited charge carriers in MoS2 quantum dots have been studied using time correlated single photon counting spectroscopy technique. Fabricated n-MoS2/p-Si 0D/3D heterojunctions exhibiting excellent rectification behavior have been studied for light emission in the forward bias and photodetection in the reverse bias. The electroluminescences with white light emission spectra in the range of 450-800 nm are found to be stable in the temperature range of 10-350 K. Size dependent spectral responsivity and detectivity of the heterojunction devices have been studied. The peak responsivity and detectivity of the fabricated heterojunction detector are estimated to be ~0.85 A/W and ~8 × 10(11) Jones, respectively at an applied bias of -2 V for MoS2 QDs of 2 nm mean diameter. The above values are found to be superior to the reported results on large area photodetector devices fabricated using two dimensional materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and characterization of on-chip silicon nitride microdisk integrated with colloidal quantum dots.

We designed and fabricated free-standing, waveguide-coupled silicon nitride microdisks hybridly integrated with embedded colloidal quantum dots. An efficient coupling of quantum dot emission to resonant disk modes and eventually to the access waveguides is demonstrated. The amount of light coupled out to the access waveguide can be tuned by controlling its dimensions and offset with the disk ed...

متن کامل

Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells

Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...

متن کامل

III-V/Si hybrid photonic devices by direct fusion bonding

Monolithic integration of III-V compound semiconductors on silicon is highly sought after for high-speed, low-power-consumption silicon photonics and low-cost, light-weight photovoltaics. Here we present a GaAs/Si direct fusion bonding technique to provide highly conductive and transparent heterojunctions by heterointerfacial band engineering in relation to doping concentrations. Metal- and oxi...

متن کامل

Ultrafast Charge Transfer and Enhanced Absorption in MoS2-Organic van der Waals Heterojunctions Using Plasmonic Metasurfaces.

Hybrid organic-inorganic heterostructures are attracting tremendous attention for optoelectronic applications due to their low-cost processing and high performance in devices. In particular, van der Waals p-n heterojunctions formed between inorganic two-dimensional (2D) materials and organic semiconductors are of interest due to the quantum confinement effects of 2D materials and the synthetic ...

متن کامل

PbS Colloidal Quantum Dot Photodetectors operating in the near infrared

Colloidal quantum dots have recently attracted lot of interest in the fabrication of optoelectronic devices due to their unique optical properties and their simple and low cost fabrication. PbS nanocrystals emerged as the most advanced colloidal material for near infrared photodetectors. In this work we report on the fabrication and characterization of PbS colloidal quantum dot photoconductors....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016